Electrical
Module 1

Basic Electrical Circuit

Basic Terms

- Current
- Voltage
- Resistance

Ohm's Law

Capacitors

$$
C=\varepsilon \frac{A}{d}
$$

Magnetic Field

Coil

Inductors, Capacitors \& ac

- Ac circuits have continuously changing values of voltage and current
- Inductors and capacitors continuously oppose these changes
- Opposition to current is called reactance
- Measured in ohms

$$
X_{L}=2 \Pi f L
$$

$$
X_{C}=\frac{1}{2 \Pi f C}
$$

Reactance Voltages \& Currents

$$
\begin{aligned}
& V_{X_{L}}=I_{X_{L}} \times X_{L} \\
& V_{X_{C}}=I_{X_{C}} \times X_{C}
\end{aligned}
$$

Terminology

Resistors

Capacitor in a DC circuit

Capacitors will not pass DC Current

Capacitive Transients

Inductor in a DC circuit

Inductors are a Short circuit to DC Current

Inductor Transients

Sine curves and phasors

Phasor Diagram

V2 Leads V1 by θ

Resistive Circuit

Series \& Parallel Inductors

Inductive Phasors

Series \& Parallel Capacitors

Capacitive Phasors

Phasors for a typical circuit

Resistor and Inductor in Series

Impedance Triangle

What is the impedance of the circuit? What is the phase angle?

Acrostic

V comes before (leads) I in an Inductor

I comes before (leads) V in a Capacitor -

Power

Power wave in a resistive circuit

Power in a capacitive circuit

Power in an inductive circuit

Power in a real circuit

Power Triangle

Watts

Apparent Power

Volts-Amperes

Direction of magnetic field

Motor Action

Electromagnetic Induction

Transformer

Motor

Motor

Series Motor

(b)

Basic Generator

Generation of Sinusoidal Voltage

START

Spinning Magnet

Three phase Generation

Field and Stator Windings

3 Phase Connections

Delta

Star

Grounded Star

Magnetic Circuit Losses

- Hysteresis
- Eddy currents

Saturation Curve

For you to do

